
Reducing Software Security Risk
Through an Integrated Approach

David Gilliam, John Powell, & John Kelly
California Institute of Technology,

Jet Propulsion Laboratory

Matt Bishop
University of California at Davis

California Institute of Technology, Jet Propulsion Lab

December 11, 2001 2

NASA RTOP:NASA RTOP:
Reducing Software Security RiskReducing Software Security Risk

• NOTE:
This work is sponsored by NASA's Office of Safety and
Mission Assurance under the NASA Software Program lead
by the NASA Software IV&V Facility

This activity is managed locally at JPL through the
Assurance and Technology Program Office (502)

December 11, 2001 3

CollaboratorsCollaborators

• David Gilliam – Principle Investigator
Network and Computer Security, JPL

• John Powell – Research Engineer
Quality Assurance, JPL

• John Kelly – RTOP Manager
Quality Assurance, JPL

• Matt Bishop – Associate Professor of Computer
Science

University of California at Davis

December 11, 2001 4

IntroductionIntroduction

•• Internet – E-Commerce vs. E-HackingInternet – E-Commerce vs. E-Hacking
ØØ Systems and DataSystems and Data
ØØ Exploits and ExposuresExploits and Exposures

• Hacking Tools
Ø “Script Kiddies”

– Bragging rights
– Warez sites
– Non-malicious unauthorized use

Ø Theft / Ransom for Profit
Ø Espionage
Ø Electronic Warfare

December 11, 2001 5

Introduction (Cont.)Introduction (Cont.)

• Today Increased S/W Security Risk
Ø NASA Missions, projects, tasks, etc.
Ø Code Complexity
Ø Collaborative Engineering
Ø Interplanetary Network (IPN)

– NASA’s Presence in Space – Additional Risk
– Potential Commercialization of Space

• IEEE – Mining Near- Earth Objects (NEO’s)

• How Do We Mitigate Security Risk?
Ø Lack of Security Assessment Tools (SAT’s)
Ø Formal Approach to Software Security

– Similar to S/W Reliability and S/W Safety

December 11, 2001 6

Research GoalResearch Goal

• Reduce security risk to the computing environment
by mitigating vulnerabilities in the software
development and maintenance life cycles
Ø Vulnerability Matrix (VM)
Ø Security Assessment Tools’ List (SATs)
Ø Property-based Testing (PBT) tool—Tester’s Assistant
Ø Model-Based security specification and verification tool

(MBV)

December 11, 2001 7

Research Goal (Cont.)Research Goal (Cont.)

• Provide software
security assessment
instrument
Ø Analyst to assist projects

and tasks developing
applications for use on
networks to ensure
security of the
applications

Ø Security Assessment
Instrument used
collectively or as
individual tools

VMatrix

PBT

MBV

Attacks not found

in the Wild

December 11, 2001 8

Vulnerability MatrixVulnerability Matrix

• Vulnerability matrix to assist security experts and
programmers where best to expend their efforts
Ø VM: DOVES database (maintained by UC Davis):

http://seclab.cs.ucdavis.edu/projects/
Ø Uses the Common Vulnerabilities and Exposures (CVE)

Listing (MITRE)
http://cve.mitre.org/cve/

Ø Contains signatures used to exploit the vulnerability –
signature properties can be used with the Tester’s
Assistant (TA) and the Modeling SPIN Tool (MBV)

Ø Will include properties for each vulnerability or
exposure for use with the PBT and the MBV tools

December 11, 2001 9

Security Assessment ToolsSecurity Assessment Tools

•• Software Security Assessment InstrumentSoftware Security Assessment Instrument
Ø Security assessment tools

– Description of each tool and its purpose
– Pros and Cons of each tool
– Alternate and related tools
– Maintained by UC Davis (for future additional tools)

December 11, 2001 10

Property – Based TestingProperty – Based Testing

December 11, 2001 11

Property-Based TestingProperty-Based Testing

• Property-based testing tool – Tester’s Assistant
(Matt Bishop, UC Davis)
Ø Perform code slicing on applications for properties for a

known set of vulnerabilities
Ø Test for vulnerabilities in code on the system or

whenever the computing environment changes
Ø Initially, checks software developed in JAVA

– The goal is to have the tool check other programming and
scripting languages as well (C, C++, Perl, ActiveX, etc.)

December 11, 2001 12

Property-Based Testing (Cont.)Property-Based Testing (Cont.)

• Compare program actions with specifications
Ø Create low-level specifications
Ø Instrument program to check that these hold
Ø Run program under run-time monitor
Ø Report violations of specifications

December 11, 2001 13

Property-Based Testing (Cont.):Property-Based Testing (Cont.):
How It WorksHow It Works

*Backup Slides provide an example on how this works with the TASPEC

December 11, 2001 14

Property-Based TesterProperty-Based Tester

• TASPEC language definitions
Ø Handle ambiguous specifications and facts
Ø Resetting, non-resetting temporal operators
Ø Existential, universal logical operators

• Design Decisions
Ø Instrumenter does most work

December 11, 2001 15

Model – Based Specification
& Verification

December 11, 2001 16

A New Model-Based SpecificationA New Model-Based Specification
Approach for SecurityApproach for Security

• Employs model checking as a core technology
• Reduces the learning curve of traditional model

specification for model checking
• Increases the usability (and thus value) of model

checking results
• Facilitates evolution of the models as systems

evolves through early lifecycle phases

December 11, 2001 17

Model CheckersModel Checkers

• Verification systems that logically determine if a model
possess a stated property are referred to as model checkers.

• Objective is to verify a model over its corresponding state
space (the subset of reachable states).

• Properties to be verified are often expressed a formula in a
temporal logic. (LTL, CTL, …)

• Models are expressed in a suitable language (e.g. SMV, Murφφ,
PROMELA(SPIN)).

• Model checkers
Ø are operational as opposed to analytic.
Ø Can be used on suitably restricted “partial specifications”.

• The goal is to find errors as opposed to proving correctness.

L5 6

December 11, 2001 18

Model Checking andModel Checking and
Computational TreesComputational Trees

L 5

Consider two concurrent processes P1 and P2 depicted by the
following state machine diagrams (example adapted from
Callahan*)

A

B
C

x

x

x

Process P1

D

E
F

y

y

y

Process P2

*J. Callahan, Automated Testing via Model Checking, presentation.

7

(A,D) (B,D) (C,D)
(A,E) (B,E) (C,E)
(A,F) (B,F) (C,F)

Note: mn = 9 states
produced when P1 & P2
are considered together

December 11, 2001 19

Model Checking and LinearModel Checking and Linear
Temporal LogicTemporal Logic

• Three common properties to check for:
Ø Invariant always p

• p is a property the model must always have

Ø Safety not ever q
• q is a property the model must never have

Ø Liveness r implies s will be “true” now or in the
future

• always the case that if property r holds at the current state,
then property s will hold at some state now or in the future

• used to guarantee that significant sequences take place

L 5

December 11, 2001 20

A Flexible Modeling FrameworkA Flexible Modeling Framework

• Component Based Approach
Ø Management strategy for the state space explosion.

– For n variables of range m the state space grows at a rate of mn by
selection critical subsets of the components.

– Modeling through small components allow verification over a
relevant subset of n

– Modeling in components is more compatible with modern
architecture and software engineering practices

December 11, 2001 21

A Flexible Modeling FrameworkA Flexible Modeling Framework

• Compositional Verification
Ø Infer results over the system model by systematic

examination of a subsets of its components
Ø Combination of components mimics the software

engineering approach of combining software
components to form systems

Ø Systematic combination of components allows
discovery of errors in systems that are too large for
model checkers.

Ø Produces relationships between components that
individually are secure but are vulnerable in
combination

December 11, 2001 22

A Flexible Modeling FrameworkA Flexible Modeling Framework

• Retain information from
previous verifications
Ø Reduces problem space

for future verification
Ø Attempts to mitigate

formal verification
complexity as system
detail & complexity
increases.

Ø Networks of component
relationships allow
offline assessment of
dangerous component
combinations

Safe Unsafe

C1 C2 C3 C4

ANDAND

•C1 or C3 = Safe

•C2 or C4 = Unsafe

•C2 undermines C1

•C3 mitigates C4

December 11, 2001 23

Real Project ApplicationReal Project Application

• Mars testbed
Ø Tentative approval to test toolset against Mars Polar Lander

software

• IsoWAN & Information Power Grid testbeds
Ø Isolated wide-area networks using a modified VPN solution to

create a secure, isolated, computing environment

December 11, 2001 24

Potential Follow-On WorkPotential Follow-On Work

• Training in use of security assessment tools in
the software development and maintenance life-
cycle

• Development of re-composable model sub-
components

• Develop capability for easy storage and access of
a library of common network security model
components and past verification results

• Develop a programmer interface to assist users
with generating properties for input into the tools

December 11, 2001 25

Potential Follow-On Work (cont.)Potential Follow-On Work (cont.)

• Enhancing and augmenting the toolset
Ø Port the code to run on different operating systems in a

run-time environment
Ø Include additional programming and scripting

languages that the Tester’s Assistant tool can slice for
vulnerabilities

Ø Augment the toolset by incorporating or developing
additional tools

Ø Develop a graphical user interface front-end checklist
and decision tree to assist in building the Model to be
verified

Ø Develop an interface into the AART Tool

December 11, 2001 26

SummarySummary

• Growth of NASA’s network aware software
applications and collaborative work increase risk
to NASA environment
Ø Risk will continue to increase as collaboration increases

• Software Security Assessment Instrument for use
in the software development and maintenance
lifecycle

December 11, 2001 27

Summary (Cont.)Summary (Cont.)

• Assessment Instrument composed of three tools
and reports:
Ø Vulnerability Matrix
Ø Tester’s Assistant
Ø Model-Based Verification

• Tools can be used collectively or individually
• There is a potential for wider application of the

instrument beyond assessment of security of
software

December 11, 2001 28

David Gilliam
JPL
400 Oak Grove Dr., MS 144-210
Pasadena, CA 91109
Phone: (818) 354-0900 FAX: (818) 393-1377
Email: david.p.gilliam@jpl.nasa.gov
Website: http://security.jpl.nasa.gov/rssr/

John Powell
MS 125-233
Phone: (818) 393-1377
Email: john.d.powell@jpl.nasa.gov

FOR MORE INFO...

December 11, 2001 29

Backup SlidesBackup Slides

December 11, 2001 30

Real Project ApplicationReal Project Application

• JPL/NASA Class A Flight Project (MECS)
Ø Testing with NASA Flight Mission – Multi-Mission

Encrypted Communication System (MECS)
Network-Aware Communication Software
– Some Initial Testing Performed

• Other NASA & JPL Projects
• Potential for Instrument use with the Inter-

Planetary Network (IPN)
• JPL/NASA Project WebSite:

http://security.jpl.nasa.gov/rssr

December 11, 2001 31

December 11, 2001 32

December 11, 2001 33

December 11, 2001 34

December 11, 2001 35

December 11, 2001 36

December 11, 2001 37

Property-Based TesterProperty-Based Tester

December 11, 2001 38

Example C CodeExample C Code

if (fgets(stdin , uname, sizeof(uname)–1) == NULL)

return(FAILED);

typedpwd = getpass(“Password: “);

if ((pw = getpwnam (uname)) != NULL){

hashtp = crypt(pw ->pw_passwd, typedpwd);

if (strcmp(pw ->pw _passwd, hashtp) == 0){

setuid (pw ->pw _uid);

return(SUCCESS);

}

}

return(FAILED);

December 11, 2001 39

In TASPECIn TASPEC

location func setuid(uid) result 1

{ assert privileges_acquired(uid); }
location func crypt(password,salt) result encryptpwd

{ assert password_entered(encryptpwd); }

location func getpwnam(name) result pwent

{ assert user_password(name, pwent->pw_passwd, pwent->pw_uid); }

location func strcmp(s1, s2) result 0

{ assert equals(s1, s2); }
password_entered(pwd1) and

user_password(name, pwd2, uid) and equal(pwd1, pwd2)

{ assert authenticated(uid) ; }

authenticated(uid) before privileges_acquired(uid)

December 11, 2001 40

MergingMerging

if (fgets(stdin , uname, sizeof(uname)–1) == NULL)

return(FAILED);

typedpwd = getpass(“Password: “);

if ((pw = getpwnam (uname)) != NULL){

hashtp = crypt(pw ->pw_passwd, typedpwd);

if (strcmp(pw ->pw _passwd, hashtp) == 0){

setuid (pw ->pw _uid);

return(SUCCESS);

}

}

return(FAILED);

user_password(uname, pw->pw_passwd, pw->pw_uid)

user_password(uname, pw->pw_passwd, pw->pw_uid)
password_entered(hashtp)

user_password(uname, pw->pw_passwd, pw->pw_uid)
password_entered(hashtp)
equals(pw->pw_passwd, hashtp)
authenticated(pw_>pw_uid)

December 11, 2001 41

Tester’s Assistant SpecificationsTester’s Assistant Specifications

• Example: “a user must authenticate himself or
herself before acquiring privileges”

is password correct? {
Compare user's password hash to hash stored for that user name
If match, set UID to user's uid
If no match, set UID to ERROR

}
if privileges granted {

compare UID to the uid for which privileges are granted
if match, all is well
if no match, specification violated

}

December 11, 2001 42

Model Based Verification (MBV)Model Based Verification (MBV)
within an Integrated Approachwithin an Integrated Approach

VMatrix

PBT

MBV

Attacks not found

in the Wild

• Flexible Modeling
Framework (FMF)
Ø Compositional Approach
Ø Makes use of SPIN
Ø Infers Results from a

partial model

• Property Interaction with
Ø Vulnerability (VMatrix)
Ø Property Based Testing (PBT)

• Potentially discovers
new vulnerabilities

December 11, 2001 43

The Flexible Modeling FrameworkThe Flexible Modeling Framework
(FMF) Approach to MBV(FMF) Approach to MBV

• A Component (c) is some logical unit of process or
application behavior
Ø A single application often will need to broken into multiple

model components
• Combining two components C1 and C2

Ø Model Checking (MC)
• Non-trivial combination of C1 and C2
• Searches the Cartesian Product of the sizes of C1 and C2

Ø FMF
• MC of C1 and C2 individually
• Combines the State Charts (SC) of C1 and C2
• Integrates assumptions that follow from 1 above
• SC traversal or localized MC of appropriate sub-model

December 11, 2001 44

Domain Specifics and FMFDomain Specifics and FMF

C1

C2

• MC reports p holds for C1 and C2
Ø Assumptions can be made about transitions (T) in C1/C2 SC

– P holds on T from C1 ^ C2
– P holds on T from C1 ^ (Unknown in C2)
– P holds on T from (Unknown in C1) ^ C

• Unify consistent states in the SCs of C1 and C2
Ø Condition: All variables that are known in C1 and C2 agree

• Any path from “O” that does not reach “~O” produces an
unknown security result when the combined C1/C2

O @ t(x) ~O @ t(x+n)Property p must hold

O @ t(y) ~O @ t(y+m)Property p must hold

December 11, 2001 45

Combinatorial Network AwareCombinatorial Network Aware
Cases being AddressedCases being Addressed

C1

C2

Network Aware (NA) Cases:
• t(x) = t(y) – C1 and C2 are NA simultaneously
• t(x+n) = t(y) – C1 ends NA sequence and C2 starts NA

sequence simultaneously
• t(x) = t(y+m) – C2 ends NA sequence and C1 starts NA

sequence simultaneously

∗ Sub cases where (n = m) and (n != m) – not currently known if this distinction
is significant with an abstract model in this domain

O @ t(x) ~O @ t(x+n)Property p must hold

O @ t(y) ~O @ t(y+m)Property p must hold

December 11, 2001 46

Combinatorial Network AwareCombinatorial Network Aware
Cases being Addressed (Cont.)Cases being Addressed (Cont.)

• The same timing cases seen on the previous slide
must be considered in the context of one NA
component (C1) and one non-NA component (C2)
Ø C1 occurring in a time relation case previously

discussed while sharing resources in common may
potentially create vulnerabilities.

– E.g. A NA control application and a printer

Ø Non NA components (application pieces) may have been
justifiably engineered with little or no consideration of
network security issues

Ø A non-NA component may represent a piece of a NA
application that does not interact with a network.

– I.E. t(X+n) < t(y), t(x) > t(y+m)

December 11, 2001 47

Model Checking: A Case StudyModel Checking: A Case Study
Simplified State Machine for PrimeSimplified State Machine for Prime

PRIME

BACKUP

Prime init suspend

PRIME NOMINAL
SEQUENCE IDLE

Power-up
Idle

Fault
Idle

SFP
ACTIVE

SEQUENCE CRITICAL

System fault protection (SFP)
 Response Active

SFP Response
Done

Done Activate Resume
from
mark point

“Validating Requirements for Fault Tolerant Systems Using Model Checking”, Schneider, Callahan & Easterbrook, 1998
This Case Study was funded by the NASA Software Program at the NASA IV&V Facility and JPL under a separate task

